9.6 The Algebra of Functions

In this section, we will take a look at all our basic operations as they apply to functions.

Operations on Functions

If f and g are functions and x is an element of the domain of each function then,
$(f+g)(x)=f(x)+g(x) \quad(f g)(x)=f(x) g(x)$
$(f-g)(x)=f(x)-g(x)$ $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0$

This just means in order to perform a basic operation on two functions, you simply need to do that particular operation pointwise.

Example 1:

Let $f(x)=x^{2}-x$ and $g(x)=3 x-2$. Find the following.
a. $(f-g)(3)$
b. $(f+g)(2)$
c. $(f g)(-1)$
d. $(f+g)(x)$
e. $(f g)(x)$
f. $\left(\frac{f}{g}\right)(0)$
g. $\left(\frac{f}{g}\right)\left(\frac{2}{3}\right)$

Solution:
a. First we recall the rule given above $(f-g)(x)=f(x)-g(x)$.

There are two primary ways in which we can approach this problem. One way is to just replace the x in the rule with 3 and simplify as follows:

$$
\begin{aligned}
(f-g)(3) & =f(3)-g(3) \\
& =\left(3^{2}\right)-3-(3(3)-2) \\
& =9-3-9+2 \\
& =-1
\end{aligned}
$$

The alternate way to do this problem is to just find $(f-g)(x)$ in general and then substitute the value in the end.

$$
\begin{aligned}
(f-g)(x) & =f(x)-g(x) \\
& =x^{2}-x-(3 x-2) \\
& =x^{2}-4 x+2 \\
(f-g)(3) & =3^{2}-4(3)+2=-1
\end{aligned}
$$

We can see they both give us -1 . We prefer the latter method since once the expression for $(f-g)(x)$ has been found we can evaluate it at as many values as we would like.
b. Again we will start by finding $(f+g)(x)$ and then evaluate at 2 .

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
& =x^{2}-x+(3 x-2) \\
& =x^{2}+2 x-2 \\
(f+g)(2) & =2^{2}+2(2)-2=6
\end{aligned}
$$

c.

$$
\begin{aligned}
(f g)(x) & =f(x) g(x) \\
& =\left(x^{2}-x\right)(3 x-2) \\
& =3 x^{3}-5 x^{2}+2 x \\
(f g)(-1) & =3(-1)^{3}-5(-1)^{2}+2(-1) \\
& =-10
\end{aligned}
$$

c. Since we have already found $(f+g)(x)$ for part b. we simply need to refer back.

$$
(f+g)(x)=x^{2}+2 x-2
$$

d. We have also already found $(f g)(x)=3 x^{3}-5 x^{2}+2 x$ in part c above.
e. We will again start by finding $\left(\frac{f}{g}\right)(x)$, then evaluate at 0 .

$$
\begin{aligned}
\left(\frac{f}{g}\right)(x) & =\frac{f(x)}{g(x)} \\
& =\frac{x^{2}-x}{3 x-2} \\
\left(\frac{f}{g}\right)(0) & =\frac{0^{2}-0}{3(0)-2} \\
& =\frac{0}{-2} \\
& =0
\end{aligned}
$$

f. In part e. we found $\left(\frac{f}{g}\right)(x)=\frac{x^{2}-x}{3 x-2}$. Evaluating at $\frac{2}{3}$ we get

$$
\begin{aligned}
\left(\frac{f}{g}\right)\left(\frac{2}{3}\right) & =\frac{\left(\frac{2}{3}\right)^{2}-\left(\frac{2}{3}\right)}{3\left(\frac{2}{3}\right)-2} \\
& =\frac{\frac{4}{9}-\frac{2}{3}}{0}
\end{aligned}
$$

But we recall that we cannot have a zero in the denominator. Also, from the rules above, we know that $g(x) \neq 0$. Thus, we can see that $\frac{2}{3}$ is not in the domain of $\left(\frac{f}{g}\right)(x)$.
Thus, we can say $\left(\frac{f}{g}\right)\left(\frac{2}{3}\right)$ is not a real number.

We now turn our attention to another very important operation on functions, the composition.

Definition: Composition of two functions

Let f and g be two functions such that $g(x)$ is in the domain of f for all x in the domain of
g. Then the composition of f and g, written $f \circ g$, is the function given by
$(f \circ g)(x)=f(g(x))$.
It usually helps to visualize the composition as $f(g(x))$.
The composition idea is one of putting an entire function into another function.

Example 2:

Let $f(x)=2 x^{2}-x+1, g(x)=2 x-3$ and $h(x)=\frac{1}{x+1}$. Find the following.
a. $(f \circ g)(0)$
b. $(h \circ g)(2)$
c. $(h \circ f)(2)$
d. $(f \circ g)(x)$
e. $(g \circ h)(x)$
f. $(f \circ f)(x)$

Solution:
a. First, by the definition we know $(f \circ g)(x)=f(g(x))$. So we really want $f(g(0))$. Like the example above, we can do this by finding the formula for $(f \circ g)(x)$ first and then evaluate it at 0 . So, if we insert $g(x)=2 x-3$ into $f(g(x))$ and simplify we get

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f(2 x-3) \\
& =2(2 x-3)^{2}-(2 x-3)+1 \\
& =2\left(4 x^{2}-12 x+9\right)-2 x+3+1 \\
& =8 x^{2}-24 x+18-2 x+4 \\
& =8 x^{2}-26 x+22
\end{aligned}
$$

Now we evaluate it for $\mathrm{x}=0$

$$
\begin{aligned}
(f \circ g)(0) & =8(0)^{2}-24(0)+22 \\
& =22
\end{aligned}
$$

b. In a similar fashion we start by finding $(h \circ g)(x)$, the evaluate as follows

$$
\begin{aligned}
(h \circ g)(x) & =h(g(x)) \\
& =h(2 x-3) \\
& =\frac{1}{(2 x-3)+1} \\
& =\frac{1}{2 x-2} \\
(h \circ g)(2) & =\frac{1}{2(2)-2} \\
& =\frac{1}{2}
\end{aligned}
$$

c.

$$
\begin{aligned}
(h \circ f)(x) & =h(f(x)) \\
& =h\left(2 x^{2}-x+1\right) \\
& =\frac{1}{\left(2 x^{2}-x+1\right)+1} \\
& =\frac{1}{2 x^{2}-x+2} \\
(h \circ f)(2) & =\frac{1}{2(2)^{2}-(2)+2} \\
& =\frac{1}{8}
\end{aligned}
$$

d. In part a. above we already found $(f \circ g)(x)=8 x^{2}-24 x+22$.
e.

$$
\begin{aligned}
(g \circ h)(x) & =g(h(x)) \\
& =g\left(\frac{1}{x+1}\right) \\
& =2\left(\frac{1}{x+1}\right)-3 \\
& =\frac{2}{x+1}-3
\end{aligned}
$$

e. Lastly, we want to take the composition of a function with itself. We do this in the same manner as all other compositions. We simply insert f into f and simplify.

$$
\begin{aligned}
(f \circ f)(x) & =f(f(x)) \\
& =f\left(2 x^{2}-x+1\right) \\
& =2\left(2 x^{2}-x+1\right)^{2}-\left(2 x^{2}-x+1\right)+1 \\
& =2\left(4 x^{4}-4 x^{3}+5 x^{2}-2 x+1\right)-2 x^{2}+x-1+1 \\
& =8 x^{4}-8 x^{3}+10 x^{2}-4 x+2-2 x^{2}+x \\
& =8 x^{4}-8 x^{3}+8 x^{2}-3 x+2
\end{aligned}
$$

9.6 Exercises

Let $f(x)=2 x-1$ and $g(x)=x^{2}-2 x+1$. Find the following.

1. $(f+g)(-1)$
2. $(f-g)(2)$
3. $(g-f)(x)$
4. $(f g)(-2)$
5. $\left(\frac{f}{g}\right)(0)$
6. $\left(\frac{g}{f}\right)(x)$
7. $(f-g)(a+h)$
8. $(f+g)(2+h)$
9. $\left(\frac{f}{g}\right)(a b)$
10. $(f g)(x)$

Let $g(x)=\frac{1}{x+1}$ and $h(x)=\frac{x}{x+1}$. Find the following.
11. $(g+h)(1)$
12. $(g-h)(-2)$
13. $(g h)(x)$
14. $\left(\frac{g}{h}\right)(-2)$
15. $(h-g)(x)$
16. $(g+h)\left(x^{2}\right)$
17. $(h-g)(a-1)$
18. $(g h)(0)$
19. $\left(\frac{h}{g}\right)(x)$
20. $(h-g)(a+b)$

Let $f(x)=\sqrt{x-1}, g(x)=x^{2}+1$ and $h(x)=\frac{2}{x}$. Find the following.
21. $(f+g)(x)$
22. $(g-g)(x)$
23. $(h-g)(x)$
24. $(g-h)(x)$
25. $(g h)(x)$
26. $(f h)(x)$
27. $(f g)(x)$
28. $\left(\frac{g}{f}\right)(x)$
29. $\left(\frac{g}{h}\right)(x)$
30. $\left(\frac{f}{h}\right)(x)$

Let $f(x)=3 x+1$ and $g(x)=2 x^{2}-x+4$. Find the following.
31. $(f \circ g)(-1)$
32. $(f \circ g)(0)$
33. $(g \circ f)(2)$
34. $(g \circ f)(-3)$
35. $(f \circ g)(-4)$
36. $(g \circ f)(6)$
37. $(f \circ g)(x)$
38. $(g \circ f)(x)$
39. $(f \circ f)(x)$
40. $(g \circ g)(x)$

Let $g(x)=\frac{1}{x+1}$ and $h(x)=\frac{2}{x}$. Find the following.
41. $(g \circ h)(2)$
42. $(h \circ g)(-1)$
43. $(h \circ g)(0)$
44. $(g \circ h)(0)$
45. $(h \circ h)(2)$
46. $(g \circ g)(0)$
47. $(g \circ h)(x)$
48. $(h \circ g)(x)$
49. $(h \circ h)(x)$
50. $(g \circ g)(x)$

Let $f(x)=\sqrt{x+1}, g(x)=x^{2}-2$ and $h(x)=|2 x-1|$. Find the following.
51. $(f \circ g)(2)$
52. $(g \circ f)(0)$
53. $(h \circ f)(3)$
54. $(g \circ h)(-1)$
55. $(f \circ h)(t)$
56. $(g \circ f)(c)$
57. $(g \circ f)(8+a)$
58. $(f \circ g)(\Delta)$
59. $(g \circ g)(a-b)$
60. $(h \circ g)(a+b)$
61. $(g \circ f)(x+h)$
62. $(h \circ f)(x)$
63. $(g \circ f)(x)$
64. $(h \circ g)(x)$
65. $(g \circ h)(x)$
66. $(f \circ h)(x)$
67. $(f \circ g)(x)$
68. $(h \circ h)(x)$
69. $(g \circ g)(x)$
70. $(f \circ f)(x)$

