9.6 The Algebra of Functions

In this section, we will take a look at all our basic operations as they apply to functions.

Operations on Functions

If f and g are functions an	d x is an element of the domain of each function then,
(f+g)(x) = f(x) + g(x)	(fg)(x) = f(x)g(x)
(f-g)(x) = f(x) - g(x)	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0$

This just means in order to perform a basic operation on two functions, you simply need to do that particular operation pointwise.

Example 1:

Let
$$f(x) = x^2 - x$$
 and $g(x) = 3x - 2$. Find the following.
a. $(f - g)(3)$ b. $(f + g)(2)$ c. $(fg)(-1)$ d. $(f + g)(x)$
e. $(fg)(x)$ f. $(\frac{f}{g})(0)$ g. $(\frac{f}{g})(\frac{2}{3})$

Solution:

a. First we recall the rule given above (f - g)(x) = f(x) - g(x). There are two primary ways in which we can approach this problem. One way is to just replace the x in the rule with 3 and simplify as follows:

$$(f - g)(3) = f(3) - g(3)$$

= (3²) - 3 - (3(3) - 2)
= 9 - 3 - 9 + 2
= -1

The alternate way to do this problem is to just find (f - g)(x) in general and then substitute the value in the end.

$$(f - g)(x) = f(x) - g(x)$$

= $x^2 - x - (3x - 2)$
= $x^2 - 4x + 2$
 $(f - g)(3) = 3^2 - 4(3) + 2 = -1$

We can see they both give us -1. We prefer the latter method since once the expression for (f - g)(x) has been found we can evaluate it at as many values as we would like.

b. Again we will start by finding (f + g)(x) and then evaluate at 2.

$$(f + g)(x) = f(x) + g(x)$$

= $x^{2} - x + (3x - 2)$
= $x^{2} + 2x - 2$
 $(f + g)(2) = 2^{2} + 2(2) - 2 = 6$
 $(fg)(x) = f(x)g(x)$
= $(x^{2} - x)(3x - 2)$
= $3x^{3} - 5x^{2} + 2x$
 $(fg)(-1) = 3(-1)^{3} - 5(-1)^{2} + 2(-1)$
= -10

c. Since we have already found (f + g)(x) for part b. we simply need to refer back. $(f + g)(x) = x^2 + 2x - 2$

- d. We have also already found $(fg)(x) = 3x^3 5x^2 + 2x$ in part c above.
- e. We will again start by finding $\left(\frac{f}{g}\right)(x)$, then evaluate at 0. $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ $= \frac{x^2 - x}{3x - 2}$ $\left(\frac{f}{g}\right)(0) = \frac{0^2 - 0}{3(0) - 2}$

$$\left(\frac{y}{g}\right)(0) = \frac{0}{3(0)-2}$$
$$= \frac{0}{-2}$$
$$= 0$$

f. In part e. we found $\left(\frac{f}{g}\right)(x) = \frac{x^2 - x}{3x - 2}$. Evaluating at $\frac{2}{3}$ we get

$$\left(\frac{f}{g}\right)\left(\frac{2}{3}\right) = \frac{\left(\frac{2}{3}\right)^2 - \left(\frac{2}{3}\right)}{3\left(\frac{2}{3}\right) - 2} = \frac{\frac{4}{9} - \frac{2}{3}}{0}$$

But we recall that we cannot have a zero in the denominator. Also, from the rules above,

we know that $g(x) \neq 0$. Thus, we can see that $\frac{2}{3}$ is not in the domain of $\left(\frac{f}{g}\right)(x)$.

Thus, we can say $\left(\frac{f}{g}\right)\left(\frac{2}{3}\right)$ is not a real number.

c.

We now turn our attention to another very important operation on functions, the composition.

Definition: Composition of two functions Let *f* and *g* be two functions such that g(x) is in the domain of *f* for all x in the domain of *g*. Then the composition of *f* and *g*, written $f \circ g$, is the function given by $(f \circ g)(x) = f(g(x)).$

It usually helps to visualize the composition as f(g(x)).

The composition idea is one of putting an entire function into another function.

Example 2:

Let
$$f(x) = 2x^2 - x + 1$$
, $g(x) = 2x - 3$ and $h(x) = \frac{1}{x+1}$. Find the following.
a. $(f \circ g)(0)$ b. $(h \circ g)(2)$ c. $(h \circ f)(2)$ d. $(f \circ g)(x)$
e. $(g \circ h)(x)$ f. $(f \circ f)(x)$

Solution:

a. First, by the definition we know $(f \circ g)(x) = f(g(x))$. So we really want f(g(0)). Like the example above, we can do this by finding the formula for $(f \circ g)(x)$ first and then evaluate it at 0. So, if we insert g(x) = 2x - 3 into f(g(x)) and simplify we get

$$(f \circ g)(x) = f(g(x))$$

= $f(2x-3)$
= $2(2x-3)^2 - (2x-3) + 1$
= $2(4x^2 - 12x + 9) - 2x + 3 + 1$
= $8x^2 - 24x + 18 - 2x + 4$
= $8x^2 - 26x + 22$

Now we evaluate it for x=0

$$(f \circ g)(0) = 8(0)^2 - 24(0) + 22$$

= 22

b. In a similar fashion we start by finding $(h \circ g)(x)$, the evaluate as follows

$$(h \circ g)(x) = h(g(x)) = h(2x-3) = \frac{1}{(2x-3)+1} = \frac{1}{2x-2} (h \circ g)(2) = \frac{1}{2(2)-2} = \frac{1}{2}$$

c.

$$(h \circ f)(x) = h(f(x))$$

= $h(2x^2 - x + 1)$
= $\frac{1}{(2x^2 - x + 1) + 1}$
= $\frac{1}{2x^2 - x + 2}$
 $(h \circ f)(2) = \frac{1}{2(2)^2 - (2) + 2}$
= $\frac{1}{8}$

d. In part a. above we already found $(f \circ g)(x) = 8x^2 - 24x + 22$.

e.

$$(g \circ h)(x) = g(h(x))$$
$$= g\left(\frac{1}{x+1}\right)$$
$$= 2\left(\frac{1}{x+1}\right) - 3$$
$$= \frac{2}{x+1} - 3$$

e. Lastly, we want to take the composition of a function with itself. We do this in the same manner as all other compositions. We simply insert f into f and simplify.

$$(f \circ f)(x) = f(f(x))$$

= $f(2x^2 - x + 1)$
= $2(2x^2 - x + 1)^2 - (2x^2 - x + 1) + 1$
= $2(4x^4 - 4x^3 + 5x^2 - 2x + 1) - 2x^2 + x - 1 + 1$
= $8x^4 - 8x^3 + 10x^2 - 4x + 2 - 2x^2 + x$
= $8x^4 - 8x^3 + 8x^2 - 3x + 2$

9.6 Exercises

Let
$$f(x) = 2x - 1$$
 and $g(x) = x^2 - 2x + 1$. Find the following.
1. $(f + g)(-1)$ 2. $(f - g)(2)$ 3. $(g - f)(x)$ 4. $(fg)(-2)$
5. $\left(\frac{f}{g}\right)(0)$ 6. $\left(\frac{g}{f}\right)(x)$ 7. $(f - g)(a + h)$ 8. $(f + g)(2 + h)$
9. $\left(\frac{f}{g}\right)(ab)$ 10. $(fg)(x)$

Let
$$g(x) = \frac{1}{x+1}$$
 and $h(x) = \frac{x}{x+1}$. Find the following.
11. $(g+h)(1)$ 12. $(g-h)(-2)$ 13. $(gh)(x)$ 14. $\left(\frac{g}{h}\right)(-2)$
15. $(h-g)(x)$ 16. $(g+h)(x^2)$ 17. $(h-g)(a-1)$ 18. $(gh)(0)$
19. $\left(\frac{h}{g}\right)(x)$ 20. $(h-g)(a+b)$

Let
$$f(x) = \sqrt{x-1}$$
, $g(x) = x^2 + 1$ and $h(x) = \frac{2}{x}$. Find the following.
21. $(f + g)(x)$ 22. $(g - g)(x)$ 23. $(h - g)(x)$ 24. $(g - h)(x)$
25. $(gh)(x)$ 26. $(fh)(x)$ 27. $(fg)(x)$ 28. $\left(\frac{g}{f}\right)(x)$
29. $\left(\frac{g}{h}\right)(x)$ 30. $\left(\frac{f}{h}\right)(x)$

Let
$$f(x) = 3x + 1$$
 and $g(x) = 2x^2 - x + 4$. Find the following.
31. $(f \circ g)(-1)$ 32. $(f \circ g)(0)$ 33. $(g \circ f)(2)$ 34. $(g \circ f)(-3)$
35. $(f \circ g)(-4)$ 36. $(g \circ f)(6)$ 37. $(f \circ g)(x)$ 38. $(g \circ f)(x)$
39. $(f \circ f)(x)$ 40. $(g \circ g)(x)$

Let
$$g(x) = \frac{1}{x+1}$$
 and $h(x) = \frac{2}{x}$. Find the following.
41. $(g \circ h)(2)$ 42. $(h \circ g)(-1)$ 43. $(h \circ g)(0)$ 44. $(g \circ h)(0)$
45. $(h \circ h)(2)$ 46. $(g \circ g)(0)$ 47. $(g \circ h)(x)$ 48. $(h \circ g)(x)$
49. $(h \circ h)(x)$ 50. $(g \circ g)(x)$
Let $f(x) = \sqrt{x+1}$, $g(x) = x^2 - 2$ and $h(x) = |2x-1|$. Find the following.
51. $(f \circ g)(2)$ 52. $(g \circ f)(0)$ 53. $(h \circ f)(3)$ 54. $(g \circ h)(-1)$
55. $(f \circ h)(t)$ 56. $(g \circ f)(c)$ 57. $(g \circ f)(8+a)$ 58. $(f \circ g)(\Delta)$
59. $(g \circ g)(a-b)$ 60. $(h \circ g)(a+b)$ 61. $(g \circ f)(x+h)$ 62. $(h \circ f)(x)$
63. $(g \circ f)(x)$ 64. $(h \circ g)(x)$ 65. $(g \circ h)(x)$ 66. $(f \circ h)(x)$
67. $(f \circ g)(x)$ 68. $(h \circ h)(x)$ 69. $(g \circ g)(x)$ 70. $(f \circ f)(x)$