
15.1 Sequences and Series Basics  
 
In this final chapter, we want to take an introductory look at the concepts of sequences and 
series.  For a more detailed discussion these topics, the reader should take a second semester 
calculus course.  Lets start with a basic definition.   
 

 
Example 1: 
 
Find the first four terms of the sequence. 

a. 𝑎𝑛 = 2𝑛 − 3  b.   𝑎𝑛 =
(−1)𝑛

2𝑛+1
  c.  𝑎1 = 3,   𝑎𝑘+1 = 2(𝑎𝑘 − 1) 

 
Solution: 

a. To find the first four terms, we simply need to evaluate the expression for n=1, 2, 3 and 4. 
So we get 

   𝑎1 = 2(1) − 3 = −1 

𝑎2 = 2(2) − 3 = 1 
𝑎3 = 2(3) − 3 = 2 

𝑎4 = 2(4) − 3 = 5 
 

b. Again, substituting n= 1, 2, 3 and 4 we get 

𝑎1 =
(−1)1

2(1) + 1
=

−1
3

 

𝑎2 =
(−1)2

2(2) + 1
=

1
5

 

𝑎3 =
(−1)3

2(3) + 1
=

−1
7

 

𝑎4 =
(−1)4

2(4) + 1
=

1
9
 

 
c. Lastly, this sequence is different than the other two.  This time, each term of the 

sequence is based on the previous term.  So we start with the first term (which we are 
given) and generate the other terms one at a time. 
 

𝑎1 = 3 
𝑎2 = 2(𝑎1 − 1) = 2(3 − 1) = 2(2) = 4 
𝑎3 = 2(𝑎2 − 1) = 2(4 − 1) = 2(3) = 6 
𝑎4 = 2(𝑎3 − 1) = 2(6 − 1) = 2(5) = 10 

 
 
The sequence in part c. above (where the terms are generated by previous terms) is referred to 
as a recursive sequence.   
 
Finding the terms of a sequence given its n-th terms (as in the first example) is fairly simple.  
Finding the n-th term based upon the terms (in other words, going backwards) is more complex, 
as we will see in the next example. 

Definition: Sequence- a function whose domain is the set of positive integers.  The 
function values 𝑎1, 𝑎2, 𝑎3, . . .  , 𝑎𝑛, . ..    are the terms of the sequence. 
 
A sequence of infinitely many terms is an infinite sequence and finitely many terms is 
a finite sequence. 
 

 



Example 2: 
 
Find the n-th term of the sequence. 

a. 1, 4, 7, 10, 13, . . . b.  0, 3, 8, 15, 24, . . . c.  1, −
1

4
,

1

9
, −

1

16
,

1

25
, . . . 

 
Solution: 

a. From example 1 above, we can see that there are sometime a couple of ways to express 
a sequence.  That is, either by the n-th term of the sequence, or, occasionally, by using a 
recursive sequence. When deciding, it best to go with whichever type you find more 
simple.  In this case, we can clearly see that each term of the sequence is 3 more than 
the previous term.  So, the simplest way to express this sequence would be 
 

𝑎1 = 1,   𝑎𝑘+1 = 𝑎𝑘 + 3 
 
The other option would require us to notice that when n = 1, we get 1, then when n = 2 
we get 4.  So by a little trial and error we could see that 𝑎𝑛 = 3𝑛 − 2.  Then we can make 
sure that this formula works for the other seen values of n, which is clearly does.   
 
So in this case, either answer is acceptable.   
 

b. This time it is much more difficult to produce the formula for 𝑎𝑛.  We can see that there is 
no way to make the sequence reclusively.  Each term is not uniformly generated from the 
previous term.   
 
However, it looks like the terms are one less than the square of n.  This is, by no means, 
obvious.  But, the more we work with sequences, the more we are able to detect these 
patterns.  In any case we have 

𝑎𝑛 = 𝑛2 − 1 
 

c. Finally, we can clearly see a pattern for the denominators.  That is, clearly we have each 

term is 
1

𝑛2.  The issue here is that the sign alternates between positive and negative.   

 
Looking back at example 1 part b, we see that the sign on the values there alternated as 
well.  This alternating sign is produced from either one of two possible expressions, 
(−1)𝑛 or (−1)𝑛+1.   
 
To decide which one we have, we can simply try a few of the first values of the sequence 
to see which one fits. In this case, the expression (−1)𝑛+1 will result in a positive for n = 
1, negative for n = 2, positive for n = 3, etc.  This matches our values in the sequence.   
 
Therefore, our sequence must be   

𝑎𝑛 =
(−1)𝑛+1

𝑛2
 

 
 
 
A very common function used in sequences is something called the factorial. 
 

Definition: Factorial- if n is a positive integer, n factorial, written 𝑛!, is defined by  
 

𝑛! = 1 ∙ 2 ∙ 3 ∙ 4 ∙ ∙∙∙ ∙ (𝑛 − 1) ∙ 𝑛 
 
Also, 0! is defined to be 1. 

 



 
In other words, the factorial of a number is the product of the number, and every number smaller 
than the number. 
 
Example 3: 
 
Evaluate. 

a. 
4!

7!
   b.  

2!∙5!

3!∙4!
   c.  

𝑛!

(𝑛+1)!
  d.  

(2𝑛−1)!

(2𝑛+1)!
 

 
Solution: 

a. The best way to simplify an expression with multiple factorials is write out the values and 
see what cancel, if anything.  We get 
 

4!

7!
=

1 ∙ 2 ∙ 3 ∙ 4

1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7
 

     =
1

5 ∙ 6 ∙ 7
 

     =
1

900
 

 
b. Again, we will write it out and look for cancelling. 

 
2! ∙ 5!

3! ∙ 4!
=

1 ∙ 2 ∙ 1 ∙ 2 ∙ 3 ∙ 4 ∙ 5

1 ∙ 2 ∙ 3 ∙ 1 ∙ 2 ∙ 3 ∙ 4
 

            =
5

3
 

 
c. This time, we will have to be more general when we write out the values since we do not 

have the value for n.  However, keep in mind, n+1 is simply the next number after n.   
So we get 

𝑛!

(𝑛 + 1)!
=

1 ∙ 2 ∙ 3 ∙ ⋯ ∙ (𝑛 − 1) ∙ 𝑛

1 ∙ 2 ∙ 3 ∙ ⋯ ∙ (𝑛 − 1) ∙ 𝑛 ∙ (𝑛 + 1)
 

 
Therefore, cancelling will result in everything on top cancelling but only the n+1 left on the 

bottom.  So the answer is 
1

𝑛+1
 

 
d. For the last one, we first need to make sense out of the expressions 2n – 1 and 2n + 1.  It 

might be helpful to plug in a few values for n to see what these numbers are and how 
they relate to each other.   
 
So for n = 1 we have 2n – 1 = 1 and 2n + 1 = 3. 
For n = 2 we have 2n – 1 = 3 and 2n + 1 = 5. 
For n = 3 we have 2n – 1 = 5 and 2n + 1 = 7. 
 
We can see that these two expressions will always produce consecutive odd numbers.  
Therefore, if we write out the factorials, we know that every value smaller than or equal to 
the number 2n – 1 will cancel.  We will be left with just the number after 2n – 1 (which is 
2n) and the number 2n + 1.   
 
So we have 

(2𝑛 − 1)!

(2𝑛 + 1)!
=

1

2𝑛(2𝑛 + 1)
 

 
 



 
 
 
Now that we have a good idea what a sequence is, we need to take the next step and talk about 
a series. 
 

 
So, a series is basically what we get when we add up all of the terms of a finite sequence. 
 
The notation used to describe a series is commonly called sigma notation (named for the Greek 
letter sigma, ∑, used in its notation). 
 
As it turns out, series have a number of properties that are very useful in evaluating the sum that 
the series represents.  Here is just a few such properties.  A more extensive list can be found in 
all calculus textbooks. 
 

Properties of Sums 

1. ∑ 𝑐𝑎𝑖
𝑛
𝑖=1 = 𝑐 ∑ 𝑎𝑖

𝑛
𝑖=1  

2. ∑ (𝑎𝑖 + 𝑏𝑖)𝑛
𝑖=1 = ∑ 𝑎𝑖

𝑛
𝑖=1 + ∑ 𝑏𝑖

𝑛
𝑖=1  

3. ∑ (𝑎𝑖 − 𝑏𝑖)𝑛
𝑖=1 = ∑ 𝑎𝑖

𝑛
𝑖=1 − ∑ 𝑏𝑖

𝑛
𝑖=1  

4. ∑ 1𝑛
𝑖=1 = 𝑛 

5. ∑ 𝑖𝑛
𝑖=1 =

𝑛(𝑛+1)

2
 

6. ∑ 𝑖2𝑛
𝑖=1 =

𝑛(𝑛+1)(2𝑛+1)

6
 

 
 
Example 4: 
 
Find the sum. 

a. ∑ 2𝑖4
𝑖=1   b.  ∑ (1 − 𝑛2)6

𝑛=2   c.  ∑
1

(𝑘−1)!

5
𝑘=1   d.  ∑ 𝑖𝑥𝑖3

𝑖=0  

 
Solution: 

a. The simplest way to figure out a sum when the upper bound is relatively small is by just 
writing the values out and preforming the sum.  We get 
 

∑ 2𝑖

4

𝑖=1

= 2(1) + 2(2) + 2(3) + 2(4) 

            = 2 + 4 + 6 + 8 
            = 20 

Definition: Series- the sum of the first n terms of a sequence.  We write 
 

∑ 𝑎𝑖

𝑛

𝑖=1

= 𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑛 

 
where i is called the index of summation, n is the upper bound of summation and 1 is 
the lower limit of summation. 
 

 



 
b. Again, we will just write out the values and add. 

 

∑(1 − 𝑛2)

6

𝑛=2

= (1 − 22) + (1 − 32) + (1 − 42) + (1 − 52) + (1 − 62) 

                        = (−3) + (−8) + (−15) + (−24) + (−35) 
                        = −85 

 
c. Writing it out we get 

 

∑
1

(𝑘 − 1)!

5

𝑘=1

=
1

(1 − 1)!
+

1

(2 − 1)!
+

1

(3 − 1)!
+

1

(4 − 1)!
+

1

(5 − 1)!
 

                        =
1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
 

                        =
1

1
+

1

1
+

1

2
+

1

6
+

1

24
+

1

120
 

                        =
326

120
 

                        =
163

60
 

 
d. Lastly, notice we have a variable in this sum.  It makes no difference to us.  We just 

simplify as much as possible. 
We have 

∑ 𝑖𝑥𝑖

3

𝑖=0

= 0𝑥0 + 1𝑥1 + 2𝑥2 + 3𝑥3 

              = 𝑥 + 2𝑥2 + 3𝑥3 
 
 
Even though we chose to just write out the values and add to evaluate the sums in example 4, we 
could have also used the properties of sums to do much of the same work.  As it turns out, the 
properties are more useful when the upper bound of the sum is a very large number.  We will 
leave a detailed discussion of that for another course. 
 

15.1 Exercises 

 
Find the first 4 terms of the sequence. 
 
1.  𝑎𝑛 = 𝑛 + 1  2.  𝑎𝑛 = 𝑛 − 2  3.  𝑎𝑛 = 3𝑛 − 4  4.  𝑎𝑛 = 2 − 4𝑛 
 

5.  𝑎𝑛 =
(−1)𝑛

3𝑛
  6.  𝑎𝑛 = (−1)𝑛+1 ∙ 2𝑛 7.  𝑎𝑛 = 1 + (−1)𝑛 8.  𝑎𝑛 =

(−1)𝑛

𝑛−3
 

 
9.  𝑎1 = 2, 𝑎𝑘+1 = 4𝑎𝑘 − 3   10.  𝑎1 = 1, 𝑎𝑘+1 = 𝑎𝑘

2 
 
Find the n-th term of the sequence. 
 
11.  2, 3, 4, 5, …  12.  1, 4, 7, 10, …  13. 1, 4, 9, 16, …    
 
14. 1, 8, 27, 64, …  15.  3, 5, 7, 9, …  16.  3, 7, 11, 15, …   
 

17.  2, 4, 8, 16, …  18.  
1

2
,

1

4
,

1

8
,

1

16
, ⋯   19.  2, √2 + 1, √3 + 1, 3, ⋯  

 



20.  2, -4, 6, -8, …  21.  1, 1, 2, 3, 5, …  22.  1,
1

2
,

1

6
,

1

24
, ⋯ 

 

23.  1 +
1

1
, 1 +

1

2
, 1 +

1

3
, 1 +

1

4
, ⋯   24.  

1

2
, −

1

4
,

1

8
, −

1

16
, ⋯   

 

25.  −
1

2
,

1

4
, −

1

6
,

1

8
, ⋯    26.  

1

3
,

2

9
,

4

27
,

8

81
, ⋯ 

 
Evaluate. 
 

27.  4!   28.  6!   9.  
3!

5!
   30.  

4!

8!
 

 

31.  
8!

2!∙6!
  32.   

5!∙4!

6!
  33.  

2!∙6!

3!∙5!
  34.  

3!∙4!

5!∙6!
 

 

35.  
𝑛!

(𝑛−1)!
  36.  

(𝑛+1)!

(𝑛−1)!
  37.  

2𝑛!

𝑛!
   38.  

(𝑛+2)!

(𝑛−1)!
 

 

39.  
(2𝑛+1)!

(2𝑛)!
.    40.  

(2𝑛+2)!

(2𝑛+4)!
 

 
Find the sum. 
 

41.  ∑ 3𝑖5
𝑖=1   42.  ∑ 𝑖24

𝑖=1   43.  ∑ (2𝑖 + 1)5
𝑖=1  44.  ∑ (8𝑘 − 3)3

𝑘=1  

 

45.  ∑
3

10𝑛
5
𝑛=1   46.  ∑

3

𝑖+1

10
𝑖=1   47.  ∑ (1 + 𝑘2)6

𝑘=3  48.  ∑
1

𝑛+1
4
𝑛=0  

 

49.  ∑ 2𝑖4
𝑖=0   50.  ∑ (−3)𝑖4

𝑖=0   51.  ∑ (𝑘 + 1)(𝑘 − 3)5
𝑘=2    

 

52.  ∑ (𝑘2 − 2𝑘 + 1)6
𝑘=2    53.  ∑

1

𝑛!

8
𝑛=0   54.  ∑

(−1)𝑘

𝑘!

4
𝑘=0   

 

55.  ∑ [(𝑖 − 1)2 + (𝑖 + 1)3]4
𝑖=1   56.  ∑ [(𝑛 + 1) − (𝑛 − 1)]5

𝑛=0  

 

57.  ∑ 𝑥𝑖3
𝑖=1   58.  ∑ 𝑥𝑘+24

𝑘=0   59.  ∑ 2𝑛𝑥2𝑛4
𝑛=0  60.  ∑ 𝑖! 𝑥𝑖5

𝑖=1  

 
 


