13.4 Nonlinear Systems

In this final section, we want to learn how to solve systems of equations that are not necessarily all linear. We call these non-linear systems of equations.

Definition: Non-linear system of equations
 A system of equations where one or more equations involved is not a line.

We primarily use the substitution method to solve a non-linear system. However, sometimes elimination will work as well.

Also, just as before, the solution to a non-linear system is all the points of intersection of the graphs of the equations. Therefore, since we now have more that just lines, we can have a variety of numbers of solutions. The graph can intersect once, twice, several times or not at all. Therefore, we should always verify the solution(s) to a system by looking at the graph.

Example 1:

Solve the system.
$x^{2}+y^{2}=100$
b.
$x^{2}+y^{2}=25$
c. $x^{2}+2 y^{2}=12$
$y-x=2$
$y^{2}=x+5$
$x y=4$

Solution:
a. We will solve this system by substitution. So we start by solving the bottom equation for y and then substitute it into the top equation. We get

$$
\begin{aligned}
& y-x=2 \Rightarrow y=x+2 \\
& x^{2}+y^{2}=100 \Rightarrow x^{2}+(x+2)^{2}=100 \\
& x^{2}+x^{2}+4 x+4=100 \\
& 2 x^{2}+4 x-96=0 \\
& 2\left(x^{2}+2 x-48\right)=0 \\
& 2(x+8)(x-6)=0 \\
& x=-8,6
\end{aligned}
$$

So we have two different x values. This means we should have two points of intersection. Lets now find the y values and verify with a graph.

$$
\begin{array}{ll}
y=x+2 & y=x+2 \\
y=-8+2 & y=6+2 \\
y=-6 & y=8
\end{array}
$$

So our solutions are $(-8,-6)$ and $(6,8)$. We clearly have a circle and a line, thus we can easily graph them together and get

b. Again we will use substitution to solve. This time notice that the bottom equation is already solved for y^{2} and we have $a y^{2}$ in the top equation. Thus, that is the substitution we will make. We get

$$
y^{2}=\overbrace{x+5}^{x^{2}+y^{2}=25} \Rightarrow x^{2}+(x+5)=25
$$

Now we solve for x and then solve for y.

$$
\begin{aligned}
x^{2}+(x+5) & =25 \\
x^{2}+x-20 & =0 \\
(x+5)(x-4) & =0 \\
x & =-5,4
\end{aligned}
$$

We substitute these back in to get y. We get

$$
\begin{array}{rlrl}
y^{2} & =-5+5 & y^{2} & =4+5 \\
y^{2} & =0 & y^{2} & =9 \\
y & =0 & y & = \pm 3
\end{array}
$$

So we have three different solutions $(-5,0),(4,3)$ and $(4,-3)$. Lets verify with a graph. We have here a parabola and a circle. We get

c. Again, we will use substitution to solve. We need to decide which variable to solve for first. It seems that x or y on the bottom equation would be easiest. So we will solve for x. We get

$$
x y=4 \Rightarrow x=\frac{4}{y}
$$

Now we substitute that into the first equation and solve. We have

$$
\begin{aligned}
x^{2}+2 y^{2}=12 \Rightarrow\left(\frac{4}{y}\right)^{2}+2 y^{2} & =12 \\
\frac{16}{y^{2}}+2 y^{2} & =12
\end{aligned}
$$

We will have to clear the fractions and solve as we did in chapter 10, that is, using a substitution.

$$
\begin{aligned}
& y^{2}\left(\frac{16}{y^{2}}+2 y^{2}\right)=y^{2}(12) \\
& 16+2 y^{4}=12 y^{2} \\
& 2 y^{4}-12 y^{2}+16=0 \quad \text { Substitute } \mathrm{u}=\mathrm{y}^{2} \\
& 2 u^{2}-12 u+16=0 \\
& 2\left(u^{2}-6 u+8\right)=0 \\
& 2(u-4)(u-2)=0 \\
& u=4,2 \\
& y^{2}=4 \quad y^{2}=2 \quad \text { Re-substitute } \mathrm{u}=\mathrm{y}^{2} \\
& y= \pm 2 \quad y= \pm \sqrt{2}
\end{aligned}
$$

So since we have four different y values we will have to find x for each one. We substitute these in to $x=\frac{4}{y}$ to get
$x=\frac{4}{2}$
$=2$
$\begin{aligned} x & =\frac{4}{-2} \\ & =-2\end{aligned}$
$x=\frac{4}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$
$x=\frac{4}{-\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$
$=\frac{4 \sqrt{2}}{2}$
$=-\frac{4 \sqrt{2}}{2}$
$=2 \sqrt{2}$
$=-2 \sqrt{2}$

So we have four solutions, $(2,2),(-2,-2),(2 \sqrt{2}, \sqrt{2})$ and $(-2 \sqrt{2},-\sqrt{2})$. Lets verify with a graph. We have an ellipse and a basic function ($x y=4 \Rightarrow y=\frac{4}{x}$). So we have

Example 2:

Solve the system.
$y=3^{x}$
b. $\begin{aligned} & y=\log _{2}(x+1) \\ & y=5-\log _{2}(x-3)\end{aligned}$

Solution:
a. This time solving is a little more complicated. There are a variety of direction we could go, however, we are going to start by noticing $3^{2 x}=\left(3^{x}\right)^{2}$. So our system really is

$$
\begin{aligned}
& y=3^{x} \\
& y=\left(3^{x}\right)^{2}-2
\end{aligned}
$$

We can see clearly we will substitute the top equation into the bottom. That is, put y in for 3^{x}. We get

$$
\begin{aligned}
y & =(y)^{2}-2 \\
y & =y^{2}-2 \\
y^{2}-y-2 & =0 \\
(y-2)(y+1) & =0 \\
y & =2,-1
\end{aligned}
$$

Now we substitute these values back in to get

$$
\begin{array}{ll}
2=3^{x} & -1=3^{x} \\
x=\log _{3} 2 &
\end{array}
$$

However, the second equation is impossible (recall, exponential functions are always positive). Thus, that solution must be omitted. So we have a solution of $\left(\log _{2} 3,2\right)$.
b. Lastly, since these equations are both already solved for y , we can simply set them equal to one another. Then we are left with a logarithmic equation to solve. We get

$$
\begin{aligned}
\log _{2}(x+1) & =5-\log _{2}(x-3) \\
\log _{2}(x+1)+\log _{2}(x-3) & =5 \\
\log _{2}(x+1)(x-3) & =5 \\
(x+1)(x-3) & =2^{5} \\
x^{2}-2 x-3 & =32 \\
x^{2}-2 x-35 & =0 \\
(x-7)(x+5) & =0 \\
x & =7,-5
\end{aligned}
$$

However, -5 cannot be a solution since is doesn't even check in the equation. Thus we only have $x=7$. Now we substitute this back into either original equation to get the y value. We choose the first equation.

$$
\begin{aligned}
y & =\log _{2}(7+1) \\
& =\log _{2} 8 \\
& =3
\end{aligned}
$$

So the solution is $(7,3)$.

13.4 Exercises

Solve the systems.

1. $x^{2}+y^{2}=2$
$x+y=2$
2. $9 x^{2}+4 y^{2}=36$
3. $3 x+2 y=6$
4. $x^{2}-y^{2}=16$
$x-2 y=1$
5. $\begin{array}{r}x^{2}-y=3 \\ 2 x-y=3\end{array}$
6. $\begin{aligned} & x^{2}-x-y=2 \\ & 4 x-3 y=0\end{aligned}$
7. $x^{2}-y=5$
$x^{2}+y^{2}=25$
8. $\begin{aligned} & x^{2}+y^{2}=13 \\ & x^{2}-y^{2}=-16\end{aligned}$
9. $x^{2}+y^{2}=14$
$x^{2}-y^{2}=4$
10. $\begin{aligned} & y=x^{2}-4 \\ & x^{2}-y^{2}=-16\end{aligned}$
11. $x y=\frac{1}{12}$
$x+y=7 x y$
12. $x^{2}+y^{2}=5$
$x y=2$
13. $2 x y+3 y^{2}=7$
$3 x y-2 y^{2}=4$
14. $x^{2}+y^{2}=25$
15. $25 x^{2}+9 y^{2}=225$
$y-x=1$
16. $\begin{aligned} & y^{2}=x+3 \\ & 2 y=x+4\end{aligned}$
17. $\begin{aligned} & y=x^{2} \\ & 3 x=y+2\end{aligned}$
18. $\begin{aligned} & x^{2}+y^{2}=18 \\ & 2 x+y=3\end{aligned}$
19. $x^{2}+y^{2}=20$
$y=x^{2}$
20. $\begin{aligned} & x^{2}-2 x+2 y^{2}=8 \\ & 2 x+y=6\end{aligned}$
21. $\begin{aligned} & x^{2}+y^{2}=25 \\ & 2 x^{2}-3 y^{2}=5\end{aligned}$
22. $\begin{aligned} & x^{2}+y^{2}=16 \\ & y^{2}-2 y^{2}=10\end{aligned}$
23. $\begin{aligned} & x y=-\frac{9}{2} \\ & 3 x+2 y=6\end{aligned}$
24. $\begin{aligned} & x^{2}+y^{2}=25 \\ & y^{2}=x+5\end{aligned}$
25. $\begin{aligned} & x^{2}+x y+2 y^{2}=7 \\ & x-2 y=5\end{aligned}$
26. $x^{2}+y^{2}=20$
$x y=8$
$\frac{1}{x}+\frac{1}{y}=5$
27.

$\frac{1}{x}-\frac{1}{y}=-3$
12. $x^{2}-y^{2}=3$
$y=x^{2}-3$
15. $x^{2}+y^{2}=13$
$y=x^{2}-1$
18. $\begin{aligned} & x^{2}+y^{2}=4 \\ & 9 x^{2}+16 y^{2}=144\end{aligned}$
21. $\begin{aligned} & x^{2}+y^{2}=20 \\ & x^{2}-y^{2}=-12\end{aligned}$
24. $\begin{aligned} & x+y=-6 \\ & x y=-7\end{aligned}$
27. $x y=\frac{1}{6}$
27. $y+x=5 x y$
30. $\begin{aligned} & x^{2}-x y+3 y^{2}=27 \\ & x-y=2\end{aligned}$
33. $3 x y+x^{2}=34$
$2 x y-3 x^{2}=8$
36. $\frac{1}{x}-\frac{1}{y}=4$
36. $\frac{1}{x}+\frac{1}{y}=-2$
37. $\frac{2}{x^{2}}+\frac{5}{y^{2}}=3$
$\frac{3}{x^{2}}-\frac{2}{y^{2}}=1$
38 $\frac{1}{x^{2}}-\frac{3}{y^{2}}=14$
38.
$\frac{2}{x^{2}}+\frac{1}{y^{2}}=35$
40. $\begin{aligned} & x^{3}-y=0 \\ & x y-16=0\end{aligned}$
43. $y=2^{x}$
43. $y=2^{2 x}-12$
41. $\begin{aligned} & y=-\sqrt{x} \\ & (x-3)^{2}+y^{2}=4\end{aligned}$
42. $\begin{aligned} & y=\sqrt{x} \\ & (x+2)^{2}+y^{2}=1\end{aligned}$
44. $\begin{aligned} & y=5^{x} \\ & y=5^{2 x}-1\end{aligned}$
47. $\begin{aligned} & y=\log _{2}(x+4) \\ & y=2-\log _{2}(x+1)\end{aligned}$
45. $\begin{aligned} & y=e^{4 x} \\ & y=e^{2 x}+6\end{aligned}$
46. $y=2 e^{2 x}$
$y=e^{x}-1$
49. $\begin{aligned} & y=\log _{9}(x+1) \\ & y=\log _{9} x+\frac{1}{2}\end{aligned}$
50. $\begin{aligned} & y=\log _{16}(x+3) \\ & y=\log _{16}(x-1)+\frac{1}{2}\end{aligned}$
39. $x^{4}=y-1$ $y-3 x^{2}+1=0$
48. $\begin{aligned} & y=\log _{6} x \\ & y=-\log _{6}(x+1)\end{aligned}$

