
13.4 Nonlinear Systems  
 
In this final section, we want to learn how to solve systems of equations that are not necessarily 
all linear.  We call these non-linear systems of equations. 
 

Definition: Non-linear system of equations 
A system of equations where one or more equations involved is not a line. 

 
We primarily use the substitution method to solve a non-linear system.  However, sometimes 
elimination will work as well.   
 
Also, just as before, the solution to a non-linear system is all the points of intersection of the 
graphs of the equations.  Therefore, since we now have more that just lines, we can have a 
variety of numbers of solutions.  The graph can intersect once, twice, several times or not at all.  
Therefore, we should always verify the solution(s) to a system by looking at the graph.   
 
Example 1:   
 
Solve the system. 
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2
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

xy

yx
 

 
Solution: 

a. We will solve this system by substitution.  So we start by solving the bottom equation for 
y and then substitute it into the top equation.  We get 

22  xyxy  

     1002100
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




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So we have two different x values.  This means we should have two points of 
intersection.  Lets now find the y values and verify with a graph. 
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So our solutions are  6,8   and  8,6 .  We clearly have a circle and a line, thus we 

can easily graph them together and get 



b. Again we will use substitution to solve.  This time notice that the bottom equation is 
already solved for y

2
 and we have a y

2
 in the top equation.  Thus, that is the substitution 

we will make.  We get 
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   2552  xx  

 Now we solve for x and then solve for y. 
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 We substitute these back in to get y.  We get 
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y

 

So we have three different solutions  0,5 ,  3,4  and  3,4  . Lets verify with a 

graph.  We have here a parabola and a circle.  We get 

 
c. Again, we will use substitution to solve.  We need to decide which variable to solve for 

first.  It seems that x or y on the bottom equation would be easiest.  So we will solve for x.  
We get 

4xy 
y

x
4
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 Now we substitute that into the first equation and solve.  We have 
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We will have to clear the fractions and solve as we did in chapter 10, that is, using a 
substitution. 
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So since we have four different y values we will have to find x for each one.  We 

substitute these in to 
y

x
4

  to get 
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So we have four solutions,      2,22,2,2,2,2   and  2,22  . 

Lets verify with a graph.  We have an ellipse and a basic function (
x

yxy
4

4  ). 

So we have  

 
Example 2: 
 
Solve the system. 

a.  
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3
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 
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Substitute u = y
2
 

Re-substitute u = y
2
 



 
Solution: 

a. This time solving is a little more complicated.  There are a variety of direction we could 

go, however, we are going to start by noticing  22 33 xx  .  So our system really is 

  23
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We can see clearly we will substitute the top equation into the bottom.  That is, put y in 
for 3

x
.  We get 
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 Now we substitute these values back in to get 
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However, the second equation is impossible (recall, exponential functions are always 

positive).  Thus, that solution must be omitted.  So we have a solution of  2,3log 2 .   

 
b. Lastly, since these equations are both already solved for y, we can simply set them equal 

to one another.  Then we are left with a logarithmic equation to solve.  We get 
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However, -5 cannot be a solution since is doesn’t even check in the equation.  Thus we 
only have x = 7.  Now we substitute this back into either original equation to get the y 
value.  We choose the first equation. 
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 So the solution is  3,7 . 

 
 

13.4 Exercises 

 
Solve the systems. 



1.  
2

222





yx

yx
   2.  

1

2522





xy

yx
  3.  

1535

225925 22





yx

yx
 

 

4.  
623

3649 22





yx

yx
  5.  

42

32





xy

xy
   6.  

23

2





yx

xy
 

 

7.  
12

1622





yx

yx
  8.  

72

254 22





yx

yx
  9.  

32
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


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10.  
32

32


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   11.  
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22 20

xy
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


  12.  
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
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13.  
034
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


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yxx
  14.  

62
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



yx

yxx
  15.  

1
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


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16.  
25

5
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2





yx
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  17.  
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



yx
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  18.  
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


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19.  
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
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
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
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22.  
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
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623

2
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25.  
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4
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2


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  26.  

5
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2
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



xy
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  27.  
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5

6
1
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28.  
xyyx
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7

12
1


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  29.  

52
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


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yxyx
  30.  

2
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


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31.  
2

522





xy

yx
  32.  

8

2022





xy
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  33.  

832
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2

2





xxy
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34.  
423

732

2

2





yxy

yxy
  35.  

3
11

5
11




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yx
  36.  

2
11

4
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


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37.  

1
23

3
52

22

22





yx

yx
  38.  

35
12

14
31
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22





yx

yx
  39.  

013

1

2

4





xy
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40.  
016

03





xy

yx
  41.  

  43 22

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xy
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
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43.  
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2
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x

x

y

y
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x

x

y
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
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x

x
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46.  
1

2 2





x

x
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   47.  

 

 1log2

4log

2

2





xy

xy
 48.  

 1log

log

6

6





xy

xy
 

 

49.  
 

2
1

9

9

log

1log





xy

xy
  50.  

 

 
2
1

16

16

1log

3log





xy

xy
 

 
 
 
 


